
1Web Design • 9-2015

Web Design
Week 4

Responsive Web Design (RWD) - Fluid Grids and Layout
You don’t know what size the viewers screen is going to be.
To be an excellent web designer your layout must respond to
different window sizes and different devices.

Don’t ever say, “I want the whole layout to fit on one page.” It
tells the world you have not embraced RWD.

How did we get here?

The original Responsive Web Layout.
In the old days of the web, everything was responsive because every site just filled the width of
the browser window.

Old school sites were not pretty, but they fit in almost any sized monitor.

Grids
Unsatisfied with one wide column, web designers came up with <div>s and CSS layouts. The
960px grid was born—a handy tool helping designers create column grids that fit neatly in a
1024x768px computer screen. Designers pretended that the whole world viewed the web on a
monitor at least 1024 pixels wide.

Left: If you view a static site on a

monitor smaller than 1024 pixels

wide, you may have to scroll

sideways to see all the content.

Right: Fluid grids allow the

layout to re-size to fit in any sized

browser, or device.

2 Web Design • 9-2015

Web Design

Responsive Web Design is Born

Shortly after the birth of the 960px grid, the web gods admitted that not everyone was viewing
the web through the same size monitor. Viewports stretched from about two inches to 27 inches
and more. We needed to design sites that adapt to different sized devices. In 2010, a web
genius named Ethan Marcotte coined the term “Responsive Web Design” in an article in the
blog A List Apart (http://alistapart.com/article/responsive-web-design). Designers who embrace
responsive web design (RWD) create layouts that present readable content in any sized viewport.

Fluid Grids
The first step toward responsive design, based on the 960px grid, is embracing relative units and
converting our beloved pixel into to percentages and ems.

It is very easy (not). You just divide the widths of your columns by the width of the whole
layout. For example a 300px wide column would be divided by the 960px width of the layout:
300px ÷ 960px = 0.3225 x 100 = 32.25%. Easy, right? No.

The 1000 Pixel Grid — Saving You From Difficult Math

Lately, another web guru came up with the 1000 pixel grid (http://www.elliotjaystocks.com/blog/
a-better-photoshop-grid-for-responsive-web-design/). Designing on the 1000 pixel grid allows
for easier math. If you have a column that is 320px wide, all you need to do is take the zero off
the width of the column and add a percent symbol; 32%. Use the ejs-1000-pixel-grid.psd file
when planning your layout and the math is done for you.

Above: The 1000 pixel grid template helps you make fluid layouts without complex math.

If using the supplied .psd template, use the first two columns to put together your mobile first design, and

all 6 columns to put together your desktop design.

3Web Design • 9-2015

Web Design
How Do You Make a Fluid Image?

As the browser window becomes smaller, columns may become narrower than the images
in them.

Left: In this image the photo is not playing along with the flexible grid, but is breaking out of its containing element.

Right: With the addition of the magical max-width property, photos will never be wider than the div that contains them.

To keep photos from breaking out of their columns, add the following code to your CSS:

img {
max-width: 100%;
height: auto;
}

The 100% max-width tells the browser to re-size images so they are never wider than the element
that contains them. It also prevents them from being “up-scaled” larger than their intended size

How do you make Fluid Text?
When it comes to sizing your text, think in terms of the relative unit, ems.

• 16px is the default font size for most browsers.
• 1 em is equal to 16px.

Why ems?
As users scale their sites, the text will scale with it, proportionate to the rest of the
content.

4 Web Design • 9-2015

Web Design

5Web Design • 9-2015

Web Design

What is normalize.css?
You may notice there is a style sheet named “normalize.css” linked to the practice html
document. Normalize.css is a CSS reset.

Above: The link to the normalize.css should come before the link to your styles.css. Whatever is lower in the cascade, will

overwrite whatever is higher. So remove browser defaults with normalize.css, and add styling back in, in your own

styles.css.

The reason your site looks a little different in different browsers is because each browser has a
different default style sheet. A true CSS reset removes all padding, margin and formatting from
every HTML element. Then you, the designer, must define every attribute of every element in your
styles.css. Defining every attribute makes your site render more consistently in every browser.

The practice site coming up uses the Normalize reset, which is a little different. Normalize
resets some styles and then adds some formatting back in. Your site renders consistently in most
browsers, but you don’t have to define every single attribute in your styles.css. According to the
Normalize web site (http://nicolasgallagher.com/about-normalize-css/): “Normalize.css makes
browsers render all elements more consistently and in line with modern standards. It precisely
targets only the styles that need normalizing.”

In your HTML code, your styles.css link must come after the normalize.css link, because style
sheets lower in the list will override style sheets higher in the list.

So from now on, let’s add this normalize.css file to our root folders, and make sure it’s linked to
all of our pages.

6 Web Design • 9-2015

Web Design

Activity
Get the “Fluid Grids Start” folder from the Shared Items server. Convert the following layout from
a fixed-width, pixel based layout, to a percentage based, fluid layout. As you work re-size the
window to see your site responding to different viewport widths.

Here is an example equation converting the .body-text selector properties from px to %.

 660px ÷ 1000px =__________ x 100% = __________%

As you work on this activity, use the formula above to convert all the pixel width measurements in
the CSS to percentages. Or figure the problems in your head.

More Responsiveness to Come
Next time, we will explore how to change the layout and type size for the different window sizes
and different devices using something called in-line media queries.

Portage Trail Project Requirement: You need to keep your design flexible by defining the
widths of your divs, articles, sections, asides and other containing elements in percentages rather
than pixels. You’ll also need to use ems in your type styles.

body-text - width: 660px

main - padding: 20px

page-wrap - width: 1040px

sidebar
width:
320px

less 10px
padding

7Web Design • 9-2015

Web Design

Responsive Web Design—Media Queries

Responsive Web Design (RWD) Review

A responsive web design is one that adapts, or responds, to any sized device. Your site adapts to the user,
your user doesn’t adapt to your site.

Fluid layout—A Layout That Always Fits

Use percentages to define the widths of your
layout elements. For example, you can apply this
rule to the div that contains your page:

.page-wrap { width: 90% }

Now your page-wrap (or whatever you call your
containing div) will fill the browser window. But
the user will never have to scroll sideways — the
container will never be wider than the browser
window.

Scalable Images

With the following code in the CSS, images will never go outside their
container—they will scale down if necessary.

img {

 max-width: 100%;

 height: auto;

 }

The layout does not fit and the

viewer must scroll sideways to

read.

The layout fits because all the

element widths are defined in

percentages.

Use max-width to keep images from busting out

of their containing element

8 Web Design • 9-2015

Web Design

Media Queries
• Media Queries are a line of CSS that tell the browser to use different styles for

different circumstances.

• Media queries can target things like screen size, device orientation (landscape or portrait), screen
resolution, print, projection and many other aspects. Study them all at http://www.w3schools.com/
cssref/css3_pr_mediaquery.asp if you are interested.

• We are going to concentrate our efforts on screen width, because with screen width we can style
layouts that look good on both tiny phone screens and wide desktop screens.

Coding a Media Query
• Media queries can be coded in the head of the document and load different style sheets for different

situations. This method causes more requests to the web server (known as http requests).

• We will be using in-line media queries to target viewport width.

• In-line media queries are located in the flow of the styles.css style sheet and do not require multiple
http requests.

First, we code all the styles to make our page look good in a small mobile device. Then, below all those
styles, we will type something like the following:

@media only screen and (min-width: 42em) {

/*styles between these curly brackets will override the properties above*/

}

The media query above identifies 42em as a breakpoint. “If the screen is wider than 42em, apply the styles
defined between these brackets. In a media query, “min-width: 42em” means the screen, at minimum, has to
be 42em wide before the styles are applied.

Why use ems and not pixels to define our breakpoints?

Reason 1: Content and comfortable line length readability should define the breakpoints. Using a
relative size ensures that when people zoom in (aka change the default type size) the browsers will react
to the media queries as expected. Fixed pixel media queries tend to break when a user zooms.

Reason 2: All the web hotshots do it, so I play along.

9Web Design • 9-2015

Web Design

Common media query breakpoints to start with:

@media only screen and (min-width: 42em) {

 /* This will generally target a tablet */

 }

@media only screen and (min-width: 62.5em) {

 /* This will generally target a desktop*/

 }

Above right: When the screen is wide enough, the browser applies styles that float the navigation next to the logo.

Example:

@media only screen and (min-width: 62.5em) {

 .logo {

 float: left;

 width: 15%;

 }

 .nav-main {

 float: left;

 width: 83%;

 padding-left: 2%;

 padding-top: 0.5em;

 }

}

The media query above says, “If the screen is wide enough, float the navigation next to the logo.” When
the screen gets wider than 62.5em the styles between the braces will override the styles defined above in
the CSS.

10 Web Design • 9-2015

Web Design

The Magical Meta Tag
(without which, none of this works on mobile devices)

Many mobile browsers will shrink every web layout down to fit on the
screen. For instance a phone with a 320pixel wide viewport might display
your page as if the viewport were 1024pixels wide. The result is a tiny
layout the user must zoom in to read. If you include the following meta
tag in the head of your HTML document, the viewport will not pretend to
be 1024pixels wide.

The code below says, “Please acknowledge that the browser window is
not huge, but is really the size of the device viewport.”

<head>

 …

 <meta name=”viewport” content=”width=device-width, initial-scale=1”>

</head>

 Tip: Add this line of code to every page of your websites from now on.

Preview Your Site on Pixel Tuner

Upload your site to a web server, then go to http://responsive.pixeltuner.de and input your url. Pixel Tuner
shows how your site will look in several different devices. The only problem with Pixel Tuner is it does not
require the <meta viewport...> tag.

Test Your Site on Real Devices

Upload your responsive site to a web server and test it on several real devices. Look at it on your smart
phone (or your classmate’s smart phone). Go to the tablets in the Creative Center and view your site in
portrait and landscape orientation. Simply shrinking the window on a desktop computer or using Pixel Tuner
is not a realistic test of a mobile experience. Also, view your site on Macintosh and Windows computers and
in different browsers.

Further reading

Another good article—a little more technical: http://www.smashingmagazine.com/2011/01/12/guidelines-
for-responsive-web-design/

Examples of beautiful RWD: http://mediaqueri.es/

Without the “viewport” meta tag,

small screens will “pinch” your

layout to fit.

11Web Design • 9-2015

Web Design

In Class Assignment
1. Get the “Media Queries Start” folder from the Shared Items Server.

2. Create the demo responsive layout shown on this and the following page.

3. Employ CSS in-line media queries that make the mobile layout adjust for a 42em wide and a 62.5em
wide screen. Use the hints below and your design and CSS knowledge to create the layouts.

4. Portage Trail Project: Design your project site to be mobile first, beginning in your Photoshop comps.
You’ll need, at minimum a mobile layout and a wide screen layout. You may have
more breakpoints if you want.

Demo Responsive Layout: (continued on next page)

When the screen is wider than 42em, style the following:

.article-wrapper,

.header-main,

.footer-main

39em wide

with auto margins on the right and left.

li in the .nav-main

23% wide; (which is 25% minus the 2% right margin

defined in an earlier style rule).

.byline-photo

auto width (the width was reduced in the mobile-first

styles).

12 Web Design • 9-2015

Web Design

When the screen is wider than 62.5em, style the following:

.logo
float left;

15% wide

.nav-main
float left;

83% wide

2% padding on the left

0.5em padding on top

.nav-main ul li
15% wide

 .article-wrapper and .header-main
 90% wide

.byline-box
float left;

11% wide (15% – 2% padding all around)

2% right margin

.byline-photo
float none (to undo the float left in an earlier style rule)

.content
float left;

66% wide

.pull-quote
float right

32% wide

2% margins on the top, bottom and left.

Negative 17% margin on the right (to move it to the right one

column)

Bonus:

When the screen is very wide, keep the type line lengths

from getting insanely long by making the default type size

bigger

When the screen is wider than 80em,

set the default type size to 125%

